Overview of Content

- Introduction
- From Screening to Pilot
- Overview of Reservoir Studies
- Pilot Implementation – Main challenges & learnings
- Expansion Plans
- A Look Into the Crystal Ball
Introduction

<table>
<thead>
<tr>
<th>Tambaredjo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithology</td>
</tr>
<tr>
<td>Depth</td>
</tr>
<tr>
<td>Net thickness</td>
</tr>
<tr>
<td>Porosity</td>
</tr>
<tr>
<td>Permeability</td>
</tr>
<tr>
<td>Heterogeneity ((V_{DP}))</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Initial reservoir pressure</td>
</tr>
<tr>
<td>Heavy Oil</td>
</tr>
<tr>
<td>Live Oil Viscosity @ Tr</td>
</tr>
<tr>
<td>Primary Recovery</td>
</tr>
</tbody>
</table>
From Screening to Pilot

WHY POLYMER FLOODING

- Why Polymer Flooding
 - Relative lower degree of complexity (operational)
 - Incremental RF → positive economics
 - Low salinity water
 - High mobility ratio

- Why NOT ISC (In Situ Combustion)
 - High degree of complexity (operational)
 - HSE risks
 - Gently dipping reservoir
 - Shallow reservoir

EOR/IOR Screening Alberta Research Council (ARC) 2004
- In Situ Combustion (ISC)
- Horizontal wells
- Waterflood

Fact Finding missions 2008
1. Bakers Field, CA - ISC
2. ONGC, India - ISC - Polymer Flooding

From Screening to Pilot

- EOR screening
- Fact finding mission
- Pilot prep
 - Detail Eng.
 - Constr.
- Pilot implementation
 - Injector 1: 2008
 - Injector 2: 2010
 - Injector 3: 2011
- Pilot monitoring
- Pilot evaluation
- Reservoir Studies

Proposal comm. scale
Introduction

Pilot Area:
- 3 injectors (inverted 5-spot)

Overview of Reservoir Studies

- Preliminary Lab Studies
 - Flow-through experiments (sandpacks → Ottawa sands)
 - Coring and core analysis, including reservoir condition coreflooding experiments (with polymer)
- Reservoir Characterization Studies
 - Static model of pilot area
- Reservoir Simulation
 - Optimization of polymer injection initial flooding pattern (3 injectors & 10 off-set producers)
 - Optimal development scenarios Phase I Expansion → 6 additional injectors & 32 producers
- Polymer Stability and Retention
- Alternative Polymers
Pilot Implementation – Main Challenges & Learnings

- Realized incremental oil recovery as of July 2014 is 3% OOIP of pilot area.
- Good injectivity (SPE 154567).
- Injection viscosity (40 cP → 85 cP → 125 cP).
- Good pressure response.
- Minimal polymer degradation (SPE 164121).
- Polymer retention low (SPE 169027).
- Polymer plant downtime < 3%.

NEW ANAEROBIC SAMPLING METHOD (SPE164121)

1. Polymer stability tests pointed out severe degradation (18 to 3 million daltons).
2. Visual inspections at wellheads showed viscous fluid.
3. Several samples analyzed at different time steps → introduction of more oxygen (with iron content in polymer solution) caused higher degradation in time.
4. Improved on-site sampling
Pilot Implementation – Main Challenges & Learnings

- Total injection about 45% of the pilot pore volume (PV):
 - 24% of pilot pattern flooded.
 - 21% moved outside pilot area.
- First oil bank response already observed.
- Recent indications of pending oil cut response in a few wells probably due to injection of higher polymer viscosity.
- Some producers with possible positive skin.

Production response vs PV injected – 1M101
Realized incremental oil production

![Graph showing oil production with polymer flood pilot area](image)

Expansion Plans

- Commercial Expansion
- 27 Additional Injectors Planned
A Look Into the Crystal Ball - Expectations

- Optimal development plan for polymer flooding expansion area –
 - Optimal well locations
 - Optimal polymer injection strategies
 - Cost effective polymer

Oil Rate Production in Area-3 by 125 cP

Possible upside commercial expansion: three-fold oil production rate

Staatsolie